Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microb Cell Fact ; 20(1): 95, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1216899

ABSTRACT

BACKGROUND: The global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need to develop safe and effective vaccines with a top priority. Multiple vaccine candidates are under development, and several vaccines are currently available. Efforts need to be undertaken to counter the threat of the global COVID-19 pandemic. RESULTS: We generated a Saccharomyces cerevisiae (S. cerevisiae)-based SARS-CoV-2 vaccine, EBY100/pYD1-RBD, in which the full-length receptor binding domain (RBD) of the spike protein of SARS-CoV-2 was expressed on the surface of yeast. Mice vaccinated orally with unadjuvanted EBY100/pYD1-RBD could produce significant humoral and mucosal responses as well as robust cellular immune responses. Notably, EBY100/pYD1-RBD elicited a mixed Th1/Th2-type cellular immune response with a Th1-biased immune response in a mouse model. CONCLUSIONS: Our findings highlight the importance of the RBD as a key target to design and develop vaccines against SARS-CoV-2 and provide evidence of oral administration of a S. cerevisiae-based SARS-CoV-2 vaccine eliciting significant immune responses. Most importantly, the S. cerevisiae surface display system can serve as a universal technology platform and be applied to develop other oral viral or bacterial vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Cellular , Saccharomyces cerevisiae , Spike Glycoprotein, Coronavirus/immunology , Administration, Oral , Animals , Binding Sites , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Female , Immunity, Humoral , Immunity, Mucosal , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL